Package | Description |
---|---|
org.ojalgo.array | |
org.ojalgo.matrix.decomposition | |
org.ojalgo.matrix.store | |
org.ojalgo.random |
Modifier and Type | Method and Description |
---|---|
Array1D<N> |
ArrayAnyD.asArray1D()
Deprecated.
v39 Not needed
|
Array1D<N> |
Array2D.asArray1D()
Deprecated.
v39 Not needed
|
Array1D<N> |
Array1D.copy() |
Array1D<N> |
Array1D.Factory.copy(Access1D<?> source) |
Array1D<N> |
Array1D.Factory.copy(double... source) |
Array1D<N> |
Array1D.copy(int... indices)
Creates a copy of this containing only the selected elements, in the specified order.
|
Array1D<N> |
Array1D.Factory.copy(List<? extends Number> source) |
Array1D<N> |
Array1D.Factory.copy(Number... source) |
static Array1D<Double> |
BufferArray.make(File file,
long count) |
Array1D<N> |
Array1D.Factory.makeFilled(long count,
NullaryFunction<?> supplier) |
Array1D<N> |
Array1D.Factory.makeSparse(long count) |
Array1D<N> |
Array1D.Factory.makeZero(long count) |
Array1D<N> |
ArrayAnyD.reduce(int dimension,
Aggregator aggregator) |
Array1D<N> |
Array2D.reduceColumns(Aggregator aggregator) |
Array1D<N> |
Array2D.reduceRows(Aggregator aggregator) |
Array1D<N> |
Array2D.sliceColumn(long col) |
Array1D<N> |
Array2D.sliceColumn(long row,
long col) |
Array1D<N> |
Array2D.sliceDiagonal(long row,
long col) |
Array1D<N> |
ArrayAnyD.sliceRange(long first,
long limit) |
Array1D<N> |
Array2D.sliceRange(long first,
long limit) |
Array1D<N> |
Array1D.sliceRange(long first,
long limit) |
Array1D<N> |
Array2D.sliceRow(long row) |
Array1D<N> |
Array2D.sliceRow(long row,
long col) |
Array1D<N> |
ArrayAnyD.sliceSet(long[] initial,
int dimension) |
Array1D<N> |
Array1D.subList(int first,
int limit) |
Array1D<N> |
Array1D.Factory.wrap(BasicArray<N> array) |
protected Array1D<N> |
BasicArray.wrapInArray1D()
A utility facade that conveniently/consistently presents the BasicArray
as a one-dimensional array.
|
Modifier and Type | Method and Description |
---|---|
Array1D<ComplexNumber> |
DecompositionStore.computeInPlaceSchur(PhysicalStore<N> transformationCollector,
boolean eigenvalue) |
Array1D<ComplexNumber> |
Eigenvalue.getEigenvalues()
Even for real matrices the eigenvalues (and eigenvectors) are potentially complex numbers.
|
Array1D<Double> |
SingularValue.getSingularValues() |
protected Array1D<ComplexNumber> |
HermitianEvD.makeEigenvalues() |
default Array1D<N> |
DecompositionStore.sliceColumn(long col) |
Array1D<N> |
DecompositionStore.sliceColumn(long row,
long col) |
Array1D<N> |
DecompositionStore.sliceDiagonal(long row,
long col) |
Array1D<N> |
DecompositionStore.sliceRange(long first,
long limit) |
default Array1D<N> |
DecompositionStore.sliceRow(long row) |
Array1D<N> |
DecompositionStore.sliceRow(long row,
long col) |
Modifier and Type | Method and Description |
---|---|
default void |
Eigenvalue.copyEigenvector(int index,
Array1D<ComplexNumber> destination)
Deprecated.
With Java 9 this will be made private. Use
Eigenvalue.getEigenvectors() or
Eigenvalue.getEigenpair(int) instead. |
Modifier and Type | Method and Description |
---|---|
Array1D<N> |
GenericDenseStore.asList() |
Array1D<Double> |
PrimitiveDenseStore.asList() |
Array1D<ComplexNumber> |
PrimitiveDenseStore.computeInPlaceSchur(PhysicalStore<Double> transformationCollector,
boolean eigenvalue) |
Array1D<ComplexNumber> |
GenericDenseStore.computeInPlaceSchur(PhysicalStore<N> transformationCollector,
boolean eigenvalue) |
Array1D<N> |
GenericDenseStore.sliceColumn(long row,
long col) |
Array1D<Double> |
PrimitiveDenseStore.sliceColumn(long row,
long col) |
Array1D<N> |
GenericDenseStore.sliceDiagonal(long row,
long col) |
Array1D<Double> |
PrimitiveDenseStore.sliceDiagonal(long row,
long col) |
Array1D<N> |
GenericDenseStore.sliceRange(long first,
long limit) |
Array1D<Double> |
PrimitiveDenseStore.sliceRange(long first,
long limit) |
Array1D<N> |
GenericDenseStore.sliceRow(long row,
long col) |
Array1D<Double> |
PrimitiveDenseStore.sliceRow(long row,
long col) |
Modifier and Type | Method and Description |
---|---|
Array1D<Double> |
Normal1D.doubleValue() |
Array1D<Double> |
Normal1D.getExpected() |
Array1D<Double> |
Normal1D.getStandardDeviation() |
Array1D<Double> |
Random1D.nextDouble()
An array of correlated random numbers, provided that you gave a correlations matrix to the constructor.
|
Array1D<Double> |
Random1D.nextGaussian()
An array of correlated random numbers, provided that you gave a correlations matrix to the constructor.
|
Copyright © 2019 Optimatika. All rights reserved.